发表论文
2023年:
1)Precision Magnetic Field Sensing with Dual Multi-Wave Atom Interferometer, Wen-Hua Yan, Xu-Dong Ren, Min-Kang Zhou*, and Zhong-Kun Hu, Sensor 23, 173 (2023).
2)Magnetic-field-sensitive multi-wave interference, Wen-Hua Yan, Xu-Dong Ren, Wen-Jie Xu*, Zhong-Kun Hu, and Min-Kang Zhou, Frontiers of Physics 18, 52306 (2023).
3)Ultrahigh-sensitivity Bragg atom gravimeter and its application in testing Lorentz violation, Tao Zhang, Le-Le Chen, Yu-Biao Shu, Wen-Jie Xu, Yuan Cheng, Qin Luo, Zhong-Kun Hu*, and Min-Kang Zhou*, PhysicalReview Applied 20, 014067 (2023).
4)Effect of atom diffusion on the efficiency of Bragg diffraction in atom interferometers, Yu-Kun Yang, Tao Zhang, Yuan Cheng, Xiao-Bing Deng, Min-Kang Zhou, Zhong-Kun Hu, Qin Luo*, and Le-Le Chen*, Optics Express 31(26), 43462-43476 (2023).
5)Characterizing the impact of the magnetic field in the frequency domain for a multiwave atom interferometer, Xu-Dong Ren, Wen-Hua Yan, Yu-Kun Yang, Xiao-Bing Deng, Wen-Jie Xu, Zhong-Kun Hu, and Min-Kang Zhou, Phys. Rev. A 108, 063309 (2023).
6)Magnetic-monopole-induced polarons in atomic superlattices, Xiang Gao, Ya-Fen Cai, Shao-Jun Li, Shou-Long Chen, Xue-Ting Fang, Qian-Ru Zhu, Lu-Shuai Cao*, Peter Schmelcher, and Zhong-Kun Hu*, Phys. Rev. A 107, 013312 (2023).
7)Improving the fringe contrast in an atomic gravimeter by optimizing the Raman laser intensity,Qing-Qing Hu, Hang Zhou, Yu-Kun Luo*, Qin Luo*, Wen-Jun Kuang, Fu-Bin Wan, Yao-Yu Zhong, and Fu-Fang Xu, Optik 276, 170637 (2023).
2022年:
1)Manifold formation and crossings of ultracold lattice spinor atoms in the intermediate interaction regime, Xue-Ting Fang, Zheng-Qi Dai, Di Xiang, Shou-Long Chen, Shao-Jun Li, Xiang Gao, Qian-Ru Zhu, Xing Deng, Lu-Shuai Cao*, and Zhong-Kun Hu, Physical Review A 106, 033315 (2022).
2)Evaluation of the transportable atom gravimeter HUST-QG, Yao-Yao Xu, Jia-Feng Cui, Kun Qi, Le-Le Chen, Xiao-Bing Deng, Qin Luo, Heng Zhang, Yu-Jie Tan, Cheng-Gang Shao, Min-Kang Zhou, Xiao-Chun Duan* and Zhong-Kun Hu, Metrologia 59, 055001 (2022).
3)Interaction effects of pseudospin-based magnetic monopoles and kinks in a doped dipolar superlattice gas, Xiang Gao, Shao-Jun Li, Shou-Long Chen, Xue-Ting Fang, Qian-Ru Zhu, Xing Deng, Lu-Shuai Cao*, Peter Schmelcher, and Zhong-Kun Hu*,Physical ReviewA 105, 053308 (2022).
4)Influence of magnetic field on the seismometer in vibration correction for atom gravimeters, Kun Qi, Yao-Yao Xu*, Xiao-Bing Deng, Le-Le Chen, Qin Luo, Min-Kang Zhou, Xiao-Chun Duan, and Zhong-Kun Hu, Review of Scientific Instruments 93, 044503 (2022).
5)Characterizing atom clouds using a charge-coupled device for atom-interferometry-based G measurements, Hua-Qing Luo, Yao-Yao Xu, Xin-Ke Chen, Heng Zhang, Xiao-Bing Deng, De-Kai Mao, Min-Kang Zhou, Xiao-Chun Duan*, and Zhong-Kun Hu, Optics Express 30(7), 10723 (2022).
6)Eliminating the phase shifts arising from additional sidebands in an atom gravimeter with a phase-modulated Raman laser, Qin Luo, Hang Zhou, Le-Le Chen*, Xiao-Chun Duan, Min-Kang Zhou, and Zhong-Kun Hu, Optics Letters 47(1), 114-117 (2022).
7)Measuring the figure of optical elements in vacuum, Qin Luo, Xiao-Jie Ma, Heng Zhang, Zhong-Kun Hu, and Min-Kang Zhou*, Applied Physics B 128, 43 (2022).
8)Determining the Three-Dimensional Position of an Atomic Cloud in an Atom Interferometer Using One Laser Beam, Qin Luo, Hang Zhou, Le-Le Chen*, Xiao-Chun Duan, Zhong-Kun Hu, and Min-Kang Zhou*,Physical ReviewApplied 17, 024033 (2022).
9)Sensitive quantum tiltmeter with nanoradian resolution, Jie Liu, Wen-Jie Xu, Cheng Zhang, Qin Luo, Zhong-Kun Hu, and Min-Kang Zhou*,Physical ReviewA 105, 013316 (2022).
10)Impact of additional sidebands generated by a tapered amplifier on an atom interferometer, Hang Zhou, Qin Luo, Xiao-Bing Deng, Le-Le Chen, Xiao-Chun Duan, Zhong-Kun Hu, and Min-Kang Zhou*, Optics Letters 47, 4945-4948 (2022).
2021年:
1)Quantum metrology with precision reaching beyond 1/N-scaling through N-probe entanglement-generating interactions,Xing Deng, Shou-Long Chen, Mao Zhang, Xiao-Fan Xu*, Jing Liu*, Zhi Gao, Xiao-Chun Duan, Min-Kang Zhou, Lu-Shuai Cao*, and Zhong-Kun Hu*,Physical ReviewA 104, 012607 (2021).
2)A dual-magneto-optical-trap atom gravity gradiometer for determining the Newtonian gravitational constant,De-Kai Mao, Xiao-Bing Deng, Hua-Qing Luo, Yao-Yao Xu, Min-Kang Zhou, Xiao-Chun Duan*, and Zhong-Kun Hu*,Review of Scientific Instruments92, 053202 (2021).
3)Precisely Mapping the Absolute Magnetic Field in Vacuum by an Optical Ramsey Atom Interferometer,Xiao-Bing Deng, Yao-Yao Xu, Xiao-Chun Duan*, and Zhong-Kun Hu*,Physical ReviewApplied 15, 054062 (2021).
4)Measuring the effective height for atom gravimeters by applying a frequency jump to Raman lasers,Yao-Yao Xu, Xiao-Bing Deng*, Hang Zhou, Kun Qi, Xin-Ke Chen, Hua-Qing Luo, Min-Kang Zhou, Xiao-Chun Duan, and Zhong-Kun Hu,Review of Scientific Instruments92, 063202 (2021).
5)The influence of polarization misalignment for modulation transfer spectrum in atom gravimeter, Hang Zhou, Qin Luo*, Le-Le Chen, Min-Kang Zhou, and Zhong-Kun Hu,Review of Scientific Instruments92, 073002 (2021).
6)Effects related to the temperature of atoms in an atom interferometry gravimeter based on ultra-cold atoms, Heng Zhang, Xu-Dong Ren, Wen-Hua Yan, Yuan Cheng, Hang Zhou, Zhi Gao*, Qin Luo*, Min-Kang Zhou, and Zhong-Kun Hu, Optics Express 29(19), 30007 (2021).
7)A car-based portable atom gravimeter and its application in field gravity survey,Jiong-Yang Zhang, Wen-Jie Xu, Shi-Da Sun, Yu-Biao Shu, Qin Luo, Yuan Cheng*, Zhong-Kun Hu, and Min-Kang Zhou*, AIP Advances 11, 115223 (2021).
2020年:
1)Movable precision gravimeters based on cold atom interferometry, Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐)*, Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), and Zhong-Kun Hu(胡忠坤)*, Chininese Physics B, Vol. 29, 093702 (2020).
2)The self-attraction effect in an atom gravity gradiometer, Heng Zhang, De-Kai Mao, Qin Luo, Zhong-Kun Hu, Le-Le Chen and Min-Kang Zhou, Metrologia 57, 045011(2020).
3)Effects of wave-front tilt and air density fluctuations in a sensitive atom interferometry gyroscope, Wen-Jie Xu, Ling Cheng, Jie Liu, Cheng Zhang, Ke Zhang, Yuan Cheng, Zhi Gao, Lu-Shuai Cao, Xiao-Chun Duan, Min-Kang Zhou, And Zhong-Kun Hu, Optics Express, 28, 12189 (2020).
4)Multi-wave atom interferometer based on Doppler-insensitive Raman transition, Le-Le Chen, Ke Zhang, Yao-Yao Xu, Qin Luo, Wen-Jie Xu, Min-Kang Zhou, And Zhong-Kun Hu, Optics Express, 28, 8463 (2020).
5)Testing the Universality of Free Fall by Comparing the Atoms in Different Hyperfine States with Bragg Diffraction, Ke Zhang(张柯), Min-Kang Zhou(周敏康)*, Yuan Cheng(程源), Le-Le Chen(陈乐乐), Qin Luo(罗覃), Wen-Jie Xu(徐文杰), Lu-Shuai Cao(曹鲁帅), Xiao-Chun Duan(段小春), Zhong-Kun Hu(胡忠坤), Chinese Physics Letters 37, 043701 (2020).
2019年:
1)The effect due to imperfect optical surface of test mass in laser interferometry absolute gravimeters, Qin Luo, Le-Le Chen, Heng Zhang, Xiao-Chun Duan, Cheng-Gang Shao, Zhong-Kun Hu* and Min-Kang Zhou*, Physica Scripta 94, 125007 (2019).
2)A compact laser system for a portable atom interferometry gravimeter, Qin Luo, Heng Zhang, Ke Zhang, Zhong-Kun Hu, Le-Le Chen*, and Min-Kang Zhou*, Review of Scientific Instruments 90, 043104 (2019).
3)Generalized Bloch oscillations of ultracold lattice atoms subject to higher-order gradients, Qian-Ru Zhu , Shou-Long Chen, Shao-Jun Li, Xue-Ting Fang, Lu-Shuai Cao* and Zhong-Kun Hu*, Physical Review A 100, 053603 (2019).
2018年:
1)Limits on Lorentz violation in gravity from worldwide superconducting gravimeters, Cheng-Gang Shao, Ya-Fen Chen, Rong Sun, Lu-Shuai Cao, Min-Kang Zhou, Zhong-Kun Hu*, Cheng-Hui Yu, and Holger Müller, Physical Review D 97, 024019 (2018).
2)Time base evaluation for atom gravimeters, Jia-Feng Cui, Yao-Yao Xu, Le-Le Chen, Kun Qi, Min-Kang Zhou, Xiao-Chun Duan*, and Zhong-Kun Hu*, Review of Scientific Instruments 89, 083104 (2018).
3)On-site calibration of the Raman laser absolute frequency for atom gravimeters, Yao-Yao Xu, Jia-Feng Cui, Kun Qi, Xiao-Bing Deng, Min-Kang Zhou, Xiao-Chun Duan*, and Zhong-Kun Hu*, Physical Review A 97, 063626(2018).
4)Momentum-resolved detection for high-precision Bragg atom interferometry, Yuan Cheng, Ke Zhang, Le-Le Chen, Tao Zhang, Wen-Jie Xu, Xiao-Chun Duan, Min-Kang Zhou*, Zhong-Kun Hu*, Physical Review A 98, 043611 (2018).
5)Note: Effect of the parasitic forced vibration in an atom gravimeter, Le-Le Chen, Qin Luo, Heng Zhang, Xiao-Chun Duan, Min-Kang Zhou*, and Zhong-Kun Hu*, Review of Scientific Instruments 89, 066105 (2018).
6)Improved frequency-shift gravity-gradient compensation on canceling the Raman-pulse-duration effect in atomic gravimeters, Ya-Jie Wang, Xiao-Yu Lu, Yu-Jie Tan, Cheng-Gang Shao*, and Zhong-Kun Hu*, Physical Review A 98, 053604 (2018).
7)Generating scalable entanglement of ultracold bosons in superlattices through resonant shaking, Lu-Shuai Cao, Xing Deng, Qian-Ru Zhu, Xiao-Fan Xu, Xue-Ting Fang, Xiang Gao, Peter Schmelcher and Zhong-Kun Hu*, Physical Review A 97, 063620 (2018).
2017年:
1)Quantum tiltmeter with atom interferometry, Wen-Jie Xu, Min-Kang Zhou*, Miao-Miao Zhao, Ke Zhang, and Zhong-Kun Hu*, Physical Review A 96, 063606 (2017).
2)Comparison of the sensitivities for atom interferometers in two different operation methods, Xiao-Chun Duan, De-Kai Mao, Xiao-Bing Deng, Min-Kang Zhou, Cheng-Gang Shao, Zhu Zhu and Zhong-Kun Hu*, Chinese Physics B 27(1): 013701 (2017).
3)Common-mode noise rejection using fringe-locking method in WEP test by simultaneous dual-species atom interferometers, Xiao-Bing Deng, Xiao-Chun Duan, De-Kai Mao, Min-Kang Zhou, Cheng-Gang Shao and Zhong-Kun Hu*, Chinese Physics B 26(4): 043702 (2017).
4)Low-phase noise and high-power laser for Bragg atom interferometer, Yuan Cheng, Ke Zhang, Le-Le Chen, Wen-Jie Xu, Qin Luo, Min-Kang Zhou*, and Zhong-Kun Hu*, AIP advance 7, 095211 (2017).
5)Rotation detection using the precession of molecular electric dipole moment, Yi Ke, Xiao-Bing Deng, and Zhong-Kun Hu*, Physical Review Applied 8, 054036 (2017).
6)Relativistic effects in atom gravimeters, Yu-Jie Tan, Cheng-Gang Shao* and Zhong-Kun Hu*, Physical Review D 95, 024002 (2017).
7)Time delay and the effect of the finite speed of light in atom gravimeters, Yu-Jie Tan, Cheng-Gang Shao* and Zhong-Kun Hu*, Physical Review A 96, 023604 (2017).
8)Collective excitations of dipolar gases based on local tunneling in superlattices, Lu-Shuai Cao*, Simeon I. Mistakidis, Xing Deng, Peter Schmelcher*, Chemical Physics 482, 303 (2017).
9)A unified ab initio approach to the correlated quantum dynamics of ultracold fermionic and bosonic mixtures, Lu-Shuai Cao*, V. Bolsinger, S. I. Mistakidis, G. M. Koutentakis, S. Kroenke, J. M. Schurer, and P. Schmelcher*, Journal of Chemical Physics 147, 044106 (2017).
2016年:
1)基于原子干涉技术的精密重力测量研究,陈乐乐,罗覃,邓小兵,谈玉杰,毛德凯,张恒,周敏康,段小春,邵成刚,胡忠坤*,中国科学:物理天文力学 46, 073003 (2016).
2)Test of the Universality of Free Fall with Atoms in Different Spin Orientations, Xiao-Chun Duan, Xiao-Bing Deng, Min-Kang Zhou, Ke Zhang, Wen-Jie Xu, Feng Xiong, Yao-Yao Xu, Cheng-Gang Shao, Jun Luo, and Zhong-Kun Hu*, Physical Review Letters 117, 023001(2016).
3)Effect of the Gaussian distribution of both atomic cloud and laser intensity in an atom gravimeter,Min-Kang Zhou, Le-Le Chen, Qin Luo, Ke Zhang, Xiao-Chun Duan, and Zhong-Kun Hu*, Physical Review A 93, 053615(2016).
4)Observing the effect of wave-front aberrations in an atom interferometer by modulating the diameter of Raman beams, Min-Kang Zhou, Qin Luo, Le-Le Chen, Xiao-Chun Duan, and Zhong-Kun Hu*, Physical Review A 93, 043610(2016).
5)Atomic multiwave interferometer for Aharonov-Casher-phase measurements,Min-Kang Zhou, Ke Zhang, Xiao-Chun Duan, Yi Ke, Cheng-Gang Shao, and Zhong-Kun Hu*, Physical Review A 93, 023641(2016).
6)Low chromatic aberration hexapole for molecular state selection, Yi Ke, Xiao-Bing Deng and Zhong-Kun Hu*, Journal of Physics B: Atomic, Molecular and Optical Physics 49, 025101(2016).
7)A general relativistic model for free-fall absolute gravimeters, Yu-Jie Tan, Cheng-Gang Shao, Jia Li and Zhong-Kun Hu*, Metrologia 53, 846 (2016).
2015年:
1)Raman-pulse-duration effect in gravity gradiometers composed of two atom interferometers, Cheng-Gang Shao, De-Kai Mao, Min-Kang Zhou, Yu-Jie Tan, Le-Le Chen, Jun Luo, and Zhong-Kun Hu*, Physical Review A 92, 053613 (2015).
2)Noise limit of a torsion pendulum under optomechanical control, Yu-Jie Tan, Zhong-Kun Hu and Cheng-Gang Shao*, Physical Review A 92, 032131(2015).
3)The speed of light perturbation in absolute gravimeters from the viewpoint of 'relativistic geometry', Cheng-Gang Shao, Yu-Jie Tan, Jia Li and Zhong-Kun Hu*, Metrologia 52, 324 (2015).
4)Investigating the frequency-dependent amplification of a tapered amplifier in atom interferometers, Su Zhan, Xiao-Chun Duan, Min-Kang Zhou, Hui-Bin Yao, Wen-Jie Xu, and Zhong-Kun Hu*, Optics Letters 40, 1 (2015).
5)Note: Directly measuring the direct digital synthesizer frequency chirp-rate for an atom interferometer, Juan-Juan Tao, Min-Kang Zhou*, Qiao-Zhen Zhang, Jia-Feng Cui, Xiao-Chun Duan, Cheng-Gang Shao, and Zhong-Kun Hu*, Review of Scientific Instruments 86, 096108 (2015).
6)Note: A three-dimension active vibration isolator for precision atom gravimeters, Min-Kang Zhou, Xin Xiong, Le-Le Chen, Jia-Feng Cui, Xiao-Chun Duan, and Zhong-Kun Hu*, Review of Scientific Instruments 86 046108 (2015).
7)Micro-Gal level gravity measurements with cold atom interferometry, Zhou Min-Kang(周敏康), Duan Xiao-Chun(段小春), Chen Le-Le(陈乐乐),Luo Qin(罗覃), Xu Yao-Yao(徐耀耀), and Hu Zhong-Kun(胡忠坤) *,Chinese Physics B, Vol. 24, No. 5 050401 (2015).
8)Contrast decay in a trapped-atom interferometer, A. Hilico, C. Solaro, Min-Kang Zhou, M. Lopez, and F. Pereira dos Santos*, Physical Review A, 91, 053616(2015).
2014年:
1)Operating an atom-interferometry-based gravity gradiometer by the dual-fringe-locking method, Xiao-Chun Duan, Min-Kang Zhou, De-Kai Mao, Hui-Bing Yao, Xiao-Bing Deng, Jun Luo, and Zhong-Kun Hu*, Physical Review A, 90, 023617 (2014).
2)Decelerating polar molecules using traveling microwave lattices, Zhong-Kun Hu*, Yi Ke, Jin-Bo Zhao, Xiao-Bing Deng, and Jun Luo, Physical Review A, 89(5), 053428(2014).
2013年:
1)Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter, Zhong-Kun Hu*, Bu-Liang Sun, Xiao-Chun Duan, Min-Kang Zhou, Le-Le Chen, Su Zhan, Qiao-Zhen Zhang, and Jun Luo, Physical Review A 88,043610 (2013).
2)Atomic multiwave interferometer in an optical lattice, Min-Kang Zhou, Bruno Pelle, Adèle Hilico, Franck Pereira dos Santos*, Physical Review A 88, 013604 (2013).
2012年:
1)Performance of a cold-atom gravimeter with an active vibration isolator, Min-Kang Zhou, Zhong-Kun Hu*, Xiao-Chun Duan, Bu-Liang Sun, Le-Le Chen, Qiao-Zhen Zhang, and Jun Luo, Physical Review A 86, 043630 (2012).
2)Proposed Test of the Equivalence Principle with Rotating Cold Polar Molecules, Hu Zhong-Kun(胡忠坤)*, Ke Yi(柯毅), Deng Xiao-Bing(邓小兵), Zhou Ze-Bing(周泽兵), Luo Jun(罗俊) , Chinese Physics Letters 29(8), 080401 (2012).
2011年:
1)Simultaneous differential measurement of a magnetic-field gradient by atom interferometry double fountains, Zhong-Kun Hu*, Xiao-Chun Duan, Min-Kang Zhou, Bu-Liang Sun, Jin-Bo Zhao and Jun Luo, Physical Review A 84, 013620 (2011).
2010年:
1)Precisely mapping the magnetic field gradient in vacuum with an atom interferometer, Min-Kang Zhou, Zhong-Kun Hu*, Xiao-Chun Duan, Bu-liang Sun, Jin-Bo Zhao and Jun Luo, Physical Review A 82, 061602R (2010).
2009年:
1)Experimental progress in gravity measurement with an atom interferometer,Min-Kang Zhou, Zhong-Kun Hu*, Xiao-Chun Duan, Bu-Liang Sun, Jin-Bo Zhao and Jun Luo, Frontiers of Physics in China 04, 170 (2009).
授权专利
专利名称 | 专利号/申请号 | 授权日期 |
一种用于原子干涉重力测量的真空装置 | ZL201611056996.3 | 20190412 |
一种基于双物质波源的原子干涉重力测量装置 | ZL201611120894.3 | 20190618 |
一种阵列式原子干涉重力梯度张量全分量的测量系统 | ZL201611217569.9 | 20180904 |
一种基于原子干涉的量子倾斜仪 | ZL201710481059.0 | 20191112 |
一种两自由度原子干涉陀螺仪 | ZL201911021861.7 | 20211203 |
一种用于真空环境下测量光学元件面形的装置及方法 | 202110573545.1 | 20220805 |
一种原子干涉仪的光源系统 | 202123454430.5 | 20220603 |
一种基于边带抑制的原子干涉仪光源 | 201621128761.6 | 20170419 |
一种双内态Bragg原子干涉惯性传感器 | 201621264241.8 | 20170606 |
一种原子干涉仪真空容器的支撑装置 | 201621277430.9 | 20170728 |
一种原子干涉仪中基于微波回泵原子的探测系统 | 201720767773.1 | 20180223 |
一种基于错位锥镜的原子重力梯度仪 |
202123452927.3 | 20220607 |